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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs that regulate complex transcriptional networks underpin
immune responses. However, little is known about the specific miRNA networks that control differentiation of specific
leukocyte subsets. In this study, we profiled miRNA expression during differentiation of eosinophils from bone marrow (BM)
progenitors (bmEos), and correlated expression with potential mRNA targets involved in crucial regulatory functions.
Profiling was performed on whole BM cultures to document the dynamic changes in miRNA expression in the BM
microenvironment over the differentiation period. miRNA for network analysis were identified in BM cultures enriched in
differentiating eosinophils, and chosen for their potential ability to target mRNA of factors that are known to play critical
roles in eosinophil differentiation pathways or cell identify.

Methodology/Principal Findings: We identified 68 miRNAs with expression patterns that were up- or down- regulated 5-
fold or more during bmEos differentiation. By employing TargetScan and MeSH databases, we identified 348 transcripts
involved in 30 canonical pathways as potentially regulated by these miRNAs. Furthermore, by applying miRanda and
Ingenuity Pathways Analysis (IPA), we identified 13 specific miRNAs that are temporally associated with the expression of IL-
5Ra and CCR3 and 14 miRNAs associated with the transcription factors GATA-1/2, PU.1 and C/EBPe. We have also identified
17 miRNAs that may regulate the expression of TLRs 4 and 13 during eosinophil differentiation, although we could identify
no miRNAs targeting the prominent secretory effector, eosinophil major basic protein.

Conclusions/Significance: This is the first study to map changes in miRNA expression in whole BM cultures during the
differentiation of eosinophils, and to predict functional links between miRNAs and their target mRNAs for the regulation of
eosinophilopoiesis. Our findings provide an important resource that will promote the platform for further understanding of
the role of these non-coding RNAs in the regulation of eosinophil differentiation and function.
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Introduction

Eosinophils are multifunctional granulocytes that are capable of

synthesising a wide range of proinflammatory mediators [1] and

are implicated in the pathogenesis of a substantial array of allergic

disorders [2]. Likewise, conditions of dysregulated eosinophil

growth and differentiation include complex disorders such as

hypereosinophilic syndromes and eosinophilic leukaemia [3]. As

such, studies that promote insight into pathways controlling

eosinophil differentiation are central to understanding how these

cells develop and their roles in health and disease.

Eosinophil differentiation and function is mediated by cell

surface receptors that promote growth, adhesion, chemotaxis,

degranulation and cell-to-cell communication [2,4–6]. Although

many factors contribute to the development of eosinophils,

interleukin (IL) -5 plays a unique and profound role in driving

differentiation and mobilisation from the bone marrow and in

sustaining viability in the periphery. Likewise, eotaxins are ligands

for cell surface CC-chemokine receptor 3 (CCR3), and serve to

modulate eosinophil homing and accumulation in tissues both

cooperatively with IL-5 and via IL-5-independent pathways [7,8].
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In this regard, IL-5 receptor subunit–a chain (IL-5Ra) and CCR3

play pivotal roles in orchestrating eosinophil activation, growth,

differentiation and chemotaxis [2,7,9–12]. Indeed, mice deficient

in IL-5, eotaxin or their respective receptors have significantly

diminished numbers of eosinophils in tissues in response to

inflammatory stimuli [13–16]. Furthermore, humanized antibod-

ies against IL-5 (e.g. mepolizumab and reslizumab) and IL-5Ra
(e.g. benralizumab) have been shown clinically to reduce

circulating eosinophil numbers and/or to suppress eosinophil

maturation in the bone marrow [17–19].

GATA family transcription factors (GATA) -1 and -2 have

been implicated in driving eosinophil lineage commitment and

differentiation [20]. Several lines of evidence have implicated

specifically GATA-1 in guiding eosinophil development [20–23].

However, substantial evidence suggests that the interplay of

several key transcription factors, including GATA -1 and -2,

PU.1 and CCAAT/enhancer binding proteins (c/EBPs), pro-

vides unique instructive signals for the commitment and

maturation of the eosinophil lineage [24–26]. Interestingly, c/

EBPe in mouse is indispensible for terminal granulopoiesis as

targeted disruption of this gene leads to failure to generate both

neutrophil and eosinophil lineages [27]. However, both activator

and repressor isoforms of c/EBPe in humans may specifically

instruct the development of eosinophil progenitor cells into

mature eosinophils [24]. Most recently, a unique role for the

endoplasmic reticulum stress signaling protein, X-box protein 1

(XBP1), in promoting eosinophil lineage commitment, has been

elucidated [28]. Other intracellular signaling events such as

signal transduction and transcription (STAT) proteins and

epigenetic regulators may also contribute to the differentiation

program [29,30].

MicroRNAs (miRNA) are approximately 22 nucleotides in

length and regulate gene expression by binding to the 39

untranslated regions of their target mRNAs to repress protein

production or destabilise the target transcript [31]. The impor-

tance of miRNAs in modulating cellular function of eukaryotes

(e.g. differentiation, proliferation, metabolism and apoptosis) has

been established [32–34]. The role of miRNA in regulating the

development of immune cells and controlling effective immunity is

also rapidly emerging [32]. However, much less is known about

the miRNA networks that control the differentiation and function

of specific leukocyte subsets. Recently, miRNA have been

implicated in the differentiation and control of eosinophilia in

allergic inflammation, however, a detailed investigation of miRNA

expression patterns employed during differentiation has not yet

been performed [35–37]. The aim of our study is to explore

miRNA expression profiling and analysis in silico in order to

improve our understanding of the factors and circuits that are

involved in the regulation eosinophil growth and differentiation.

As a first approach, we have performed microarrays on whole

bone marrow cultures during eosinophil differentiation to char-

acterise the dynamics of miRNA expression in this cellular milieu.

To predict functional links between miRNAs and their target

mRNAs for the regulation of eosinophil differentiation, we have

examined the expression profiles of miRNA in BM cultures

enriched in differentiating eosinophils, which target seed sequenc-

es in critical factors known to regulate eosinophil differentiation

and cell identity. Our investigation provides novel information on

the miRNA expression patterns during eosinophil differentiation

and as such demonstrates how specific miRNA may contribute to

eosinophil identity and function.

Materials and Methods

Animals
Specific pathogen-free BALB/c mice (6–8 weeks) were obtained

from the animal services unit of the University of Newcastle. All

experiments were performed with approval from the Animal

Ethics Committee of the University of Newcastle (Permit Number:

A-2010-136). All surgery was performed under sodium pentobar-

bital anesthesia, and all efforts were made to minimize suffering.

Culture and Identification of Bone Marrow-derived
Eosinophils
Bone marrow-derived eosinophils (bmEos) were differentiated

and examined as previously described [21]. Briefly, mouse femurs

were flushed with 5 ml ice-cold Hank’s buffered saline (HBSS)

through a 70 mm cell strainer. After lysis of red blood cells and

washing with phosphate buffered saline (PBS) bone marrow cells

were cultured at a concentration of 16106 cells/ml in RPMI-1640

medium (Invitrogen) containing 20% fetal calf serum (FCS), 4 mM

glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, 25 mM

hydroxyethyl piperazineethanesulfonic acid, 50 mM 2-mercapto-

ethanol, 1x non-essential amino acids and 1 mM sodium pyruvate.

Culture medium was supplemented with 100 ng/ml stem-cell

factor (SCF; PeproTech) and 100 ng/ml FLT3-Ligand (Flt3L;

PeproTech) at 37uC in a humidified atmosphere of 5% CO2 and

95% air. On day 4, the media containing SCF and Flt3L was

replaced with media supplemented with 10 ng/ml recombinant

mouse IL-5 (R&D Systems). Then, every second day from day 4,

one half of the media was replaced with fresh media containing IL-

5 and the cell concentration was maintained at 16106 cells/ml.

Cells were collected every second day for miRNA microarray and

qPCR. The purity of bmEos was determined using flow cytometry

and Giemsa staining.

Giemsa Staining
56105 bmEos were centrifuged in 100 ml aliquots onto clean

glass slides for 5 min at 3006 g using a Cytospin centrifuge.

Cytospin preparations were air dried and fixed followed by

staining with Giemsa. Eosinophils were determined morphologi-

cally as previously described [21,35].

Flow Cytometry
Cells (36105) were incubated first with mouse FcBlock (2.4G2;

BD PharMingen, San Diego, CA, USA) to inhibit nonspecific

binding of antibodies. After washing, cells were stained with anti-

Siglec F, anti-Gr-1, anti-CD11b, anti-CD11c and respective

isotype controls (BD Biosciences, PharMingen). Numbers of

positive cells were quantified by flow cytometry (FACSCanto flow

cytometer, BD Biosciences, San Jose, CA). Eosinophils were

identified as SiglecF+Gr-1+CD11b+CD11c- [21,38]. Data were

collected on a FACSCanto flow cytometer and analysed with

FlowJo software (version 10, Tree Star, Inc).

miRNA Microarray
Total RNA was extracted from bone marrow cells and bmEos

using TRIzol reagents (Life Technologies) and miRNA microarray

was performed as previously reported [35]. Briefly, the Agilent

spike-In control was added to 100 ng RNA, which was dephos-

phorylated by incubating the samples at 37uC for 30 minutes

followed by ligation of Cy3 using the Complete Labelling and

Hybridisation c-Kit (Agilent). Following ligation and drying, the

Cy3-labelled RNA samples were hybridized for 20 h at 55uC to

Agilent 8615K mouse microRNA array slides (AMADID 21828),
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which included 627 mouse miRNA and 39 mouse viral miRNA

from the Sanger database 12.0. After washing with Agilent gene

expression wash buffers, the hybridized microarrays were scanned

on a High Resolution C scanner (Agilent). Data were extracted

from scanned microarrays using Feature Extraction software

(version 10.7.3.1). The fluorescence index of each miRNA at

different timepoints was further normalized to that of the

respective miRNAs in control group (isolated bone marrow cells).

The normalized microarray data were managed and analyzed by

GeneSpring (Agilent). MicroArray data have been deposited into

ArrayExpress (http://www.ebi.ac.uk/arrayexpress/). The acces-

sion number is E-MTAB-2442.

miRNA Quantitative Polymerase Chain Reaction
miRNA quantitative polymerase chain reactions (qPCR) were

performed using the TaqMan MicroRNA reverse transcription kit

(Life Technologies), Taqman MicroRNA qPCR assays (Life

Technologies) and TaqMan Universal PCR Master Mix, as

previously described [35]. qPCR reactions were performed

according to the manufacturers’ suggested conditions. Sno202

was used as a housekeeping control RNA in the experiments.

Relative expression was calculated using the 22DDCt method.

miRNA Target Analysis
For prediction of target genes of differentially expressed

miRNAs, we first used TargetScan 6.1 (http://www.targetscan.

org/) to identify the potential mRNA targets. MeSH database

(http://www.nlm.nih.gov/mesh/meshhome.html) was then em-

ployed to identify the molecules relevant to eosinophil biology by

exact syntax matching. MiRanda (http://www.microrna.org/)

was also used to refine the predicted targets. Ingenuity Pathways

Analysis (Ingenuity Systems, Redwood City, CA) software was

further used to identify canonical signaling pathways containing

the miRNA-associated eosinophil-associated molecules, and to

establish network connections between miRNAs and their

respective predicted targets.

mRNA Quantitative PCR
The method for qPCR has been described in detail elsewhere

[9,23]. Briefly, total RNA was isolated from bone marrow cells

and bmEos from week 2 to week 6 with TriReagent (Life

Technologies), and reverse-transcribed using M-MLV Reverse

Transcriptase (Life Technologies). qPCR was performed using an

ABI Viia7 qpcr machine (Life Technologies). Amplicons were

detected using SYBR green and expression was normalized to

hypoxanthine-guanine phosphoribosyl transferase (HPRT). Prim-

ers sequences are shown in Table S1.

Statistical Analysis
An initial one-way ANOVA was followed by appropriate

comparisons to test for differences between means of groups.

Values are reported as the means 6 SEM for each experimental

group. The number of samples at each time-point ranged from 4

to 6. Differences in means were considered significant if p was ,

0.05. For regression analyses, significance was determined by using

Pearson correlation tests. Pearson statistics are reported in Table

S8 in File S1.

Results

Generation of bmEos
Isolated bone marrow cells from mice were cultured for 14 days

as described in Methods. On day 4, before the addition of IL-5,

and on day 8 and 14 in the presence of IL-5, the percentage of

bmEos was first determined by FACS; the characteristic morpho-

logical features of bmEos, including bilobed nucleus and red-

staining cytoplasmic granules, were identified by Giemsa staining.

The percentage of bmEos (SiglecF+Gr-12CD11b+CD11c2) in-

creased from 2.8% on day 4 to 98.0% by day 14 (Fig. 1A). These

percentages were also observed with Giemsa staining of cytospin

preparations (Fig. 1B and C). The eosinophil population

underwent significant expansion after day 8 in culture. The

numbers of bmEos were increased approximately 320-fold from

0.560.46104 cells/ml at day 4 to 139.0622.06104 cells/ml on

day 14 (Fig. 1C).

Distinct miRNA Expression Profile during Eosinophil
Development
Given the broad involvement of miRNAs in the regulation of

post-transcriptional gene expression, we next determined the

miRNA profile of bmEos from day 4 to day 14. Total RNA was

isolated from cells sampled every second day and screened as

described in Methods. A total of 68 unique miRNAs were selected

based on 5-fold increased or decreased expression during bmEos

differentiation. Among them, 42 exhibited decreased and 26

exhibited increased expression, respectively (Fig. 2). Detailed

information describing these miRNAs is included in Table S2 in

File S1. We confirmed the differential expression of 7 of the 68

miRNAs with qPCR (Fig. 3). These specific miRNAs have been

linked to leukocyte development and inflammation [39–45]. We

also examined the expression levels of miR-223, which has been

reported to be a critical regulator of myeloid development [46].;

interestingly, levels of this miRNA remained largely unchanged

over the differentiation period.

Critical Transcriptional Regulators for Eosinophilopoiesis
are Targeted by Distinct Sets of miRNAs
The differentiation of eosinophils is critically determined by a

coordinated interaction between GATA -1/2, PU.1 and c/EBPe
[25]. Thus, we evaluated the expression levels of these factors by

qPCR and correlated these levels to those of the 68 differentially

expressed miRNAs (Fig. 2). As anticipated, the expression levels of

the four transcription factors were significantly enhanced (Fig. 4A),

as previously reported, during differentiation [22,23,25,47]. With

IPA software and the miRanda database, we identified 14

miRNAs that may have an impact on the expression of these

four crucial transcriptional regulators (Fig. 4B). We correlated the

expression levels of these miRNAs to GATA1 (let-7e, miR -200a, -

378 and -429), GATA2 (miR -132, -144, -193b, -200a, -363 and -

429), PU.1 (miR -7b, -155, -429 and -669f) and c/EBPe (miR -

130a, -152 and -194) (Fig. 4C). Both miR-200a and miR-429 are

linked to GATA -1 and -2; miR-429 is particularly notable, as it

also linked to expression of a third transcription factor, PU.1. The

39-UTR binding sites of miRNAs that target these mRNAs are

shown in Table S3 in File S2.

Analysis of Eosinophil-related Molecules and Canonical
Pathways Potentially Regulated by the miRNAs
By using TargetScan (version 6.1), we identified consensus

mRNA targets of these 68 miRNAs. TargetScan is a search engine

for predicted targets of miRNA in eukaryotes. It searches for the

conserved and/or non-conserved 8- and 7-mer sites, which share

sequence homology with each miRNA, that are located in the 39-

UTR regions of mRNAs [48]. Predictions are then ranked by their

probability of targeting the mRNA transcript [49]. In this study,

the 95th percentile was used to predict the potential targets by

these 68 miRNAs with TargetScan. We identified 4988 mRNA
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transcripts that had the potential to be targeted by this group of

miRNAs (Fig. 5A). The target mRNAs were further refined by

searching the MeSH database, in an effort to link gene expression

data with known eosinophil-related pathways, diseases and

phenotypes. There were 1192 mRNAs identified by MeSH

database as containing the exact terms ‘‘eosinophils, eosinophilia,

IL-3, IL-5, eosinophil peroxidase, eosinophil cationic protein,

eosinophil granule proteins, eosinophil major basic protein or

eosinophil-derived neurotoxin’’ with a link to at least one

PubMed-affiliated reference. We then plotted differences in

distribution of mRNAs predicted by TargetScan and MeSH

databases, and found that, of the original 4988 transcripts, we

could identify 348 that were associated with eosinophil biology and

targeted by members of the 68 miRNAs that were identified by

both search methods (Fig. 5A and Table S4 in File S1).

To gain further understanding of the way in which the 348

eosinophil-associated mRNAs contribute to intracellular events in

eosinophils, these genes were then classified according to signaling

pathways using the IPA Ingenuity system; the top 30 canonical

pathways were listed (Fig. 5B; Table S5 in File S1). There are 140

molecules (40.2% of the 348 eosinophil-associated transcripts) that

are included within these top 30 canonical pathways. Although

many of the pathways are commonly involved in cell death and

survival or proinflammatory activity, these pathways may also

contribute to eosinophil differentiation and function. For example,

Glucocorticoid Receptor Signaling may contribute to eosinophil

Figure 1. Expansion of bmEos ex vivo. Bone marrow cells from BALB/c mice were cultured for 14 days, see Methods and samples taken from day
4 to day 14 in cultures grown in the presence of IL-5. Eosinophils were identified by (A) flow cytometry (SiglecF+Gr-12CD11b+CD11c2), (B) light
microscopy with Giemsa staining (1006) and (C) the percentages and numbers of bmEos were determined using a haemocytometer. Values are
presented as mean 6SEM (n= 4,6), **P,0.01 (d10, d12 or d14 vs. other groups). *P,0.05 (vs. d4, d6 or d8). # P,0.05 (vs. d4 or d6).
doi:10.1371/journal.pone.0097537.g001
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Figure 2. Expression levels of miRNA during bmEos differentiation. Bone marrow cells from BALB/c mice were cultured for 14 days. Heat
map representation of expression levels of miRNA that were up-regulated or down-regulated by more than 5-fold from day 4 to day14 in the
presence of IL-5. The fluorescence index of each miRNA at different timepoints was further normalized to that of the respective miRNAs in the control
group (isolated bone marrow cells). The normalized microarray data were managed and analyzed by GeneSpring (Agilent). Data represent three
independent bmEos cultures. Scale ranges from a signal value of26.1(blue) to 6.1(red). Some of miRNAs were selected to further confirm the efficacy
of miRNA array.
doi:10.1371/journal.pone.0097537.g002
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Figure 3. Confirmation of miRNA array expression by Taqman quantitative PCR. 8 miRNAs (miRNA -144, -223, -146a, -365, -155, -451, -194
and -494) were selected to verify the expression profile of the miRNA array. Samples were RNA isolated from cultured bone marrow cells from day 4
to day14 in the presence of IL-5, and represent three independent cultures. Values are presented as mean 6SEM (n= 4,6), **P,0.05 (vs. other
groups). *P,0.05 (vs. d4).
doi:10.1371/journal.pone.0097537.g003
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Figure 4. Expression of GATA -1/2, PU.1 and c/EBPe correlated with the expression levels of miRNAs that potentially target these
transcripts. Bone marrow cells were cultured as described in Methods and RNA samples were extracted from cells taken from day 4 to day14 which
had been grown in the presence of IL-5. A. Expression levels of GATA -1/2, PU.1 and c/EBPe were determined by qPCR. B. Potential miRNAs targeting
the 39-UTR of the four transcription factors were identified by TargetScan, the Miranda database and IPA ingenuity system. Blue represents decreased

MicroRNAs Regulate Eosinophilopoiesis
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viability [50] and PI3/AKT Signaling is critical for degranulation

[51]. Although evidence is limited, pathways such as IL-3, Insulin-

like growth factor 1 (IGF-1), IL-15, FLT3 Signaling in Hemato-

poietic Progenitor Cells, Erythropoietin and Role of JAK2 in

Hormone-like Cytokine Signaling pathways may serve to regulate

eosinophil differentiation and proliferation. The well-known

inflammatory pathways such as IL-6, Acute Phase Response,

Peroxisome Proliferator-Activated Receptor (PPAR), IL-12 and

Nuclear Factor- kB (NF- kB) likewise regulate the production of

proinflammatory factors by eosinophils. These cells may also use

Triggering Receptor Expressed on Myeloid Cells 1 (TREM1)

pathway to respond to infection, as TREM1 pathway is critical for

the regulation of acute inflammatory responses to microbial

products [52]. Interestingly, eosinophils may contribute to the

expression of miRNAs, whereas yellow is for increased expressed miRNAs. C. The fold changes of potential regulating miRNAs were calculated based
on the fluorescence index of each miRNA at different time-points, after normalization to that of the respective miRNAs in the control group (isolated
bone marrow cells). Data represent three independent eosinophil cell cultures. Values are presented as mean 6SEM (n= 4,6), **P,0.05 (vs. other
groups). *P,0.05 (vs. d4).
doi:10.1371/journal.pone.0097537.g004

Figure 5. Potential molecules and top canonical pathways that were predicted and targeted by the miRNAs that exhibited 5-fold
changes in expression. A. Target prediction by TargetScan database (http://www.targetscan.org/) was established on sequence data
complementarity to target 39UTR sites. Target molecules, associated with eosinophil biology, were identified by exact syntax matching in the
MeSH database. (http://www.nlm.nih.gov/MeSH/MeSHhome.html). B. Top 30 canonical pathways that consist of the putatively selected 348
molecules as identified by IPA. The significance of association between selected genes and canonical pathway was evaluated by a right-tailed Fisher’s
exact test to calculate a p value determining the probability that the association is not explained by chance alone (grey bars, upper y-axis). Ratios
referring to the proportion of selected genes from a pathway related to the total number of molecules that make up that particular pathway were
also displayed (line graph, bottom y-axis).
doi:10.1371/journal.pone.0097537.g005
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development of rheumatoid arthritis [53,54], as the three signaling

pathways, Role of Macrophages/Fibroblast and Endothelial Cell,

Altered T Cell and B Cell in Rheumatoid Arthritis and Role of

Macrophages/Fibroblast and Endothelial Cell in Rheumatoid

Arthritis, have been linked to pathogenesis of this disease.

Collectively, these data suggest important roles for miRNAs in

the regulation of both the biological function and cell death/

survival of bmEos.

Multiple miRNAs are Linked to the Expression of IL-5Ra
Chain and CCR3
As IL-5Ra, CCR3 and the secretory mediator, major basic

protein (MBP) are critical signature molecules for eosinophils, we

examined the expression of these factors in bmEos cultures from

day 4 to day 14 by qPCR (Fig. 6A). Relative expression of

transcripts encoding all three factors underwent significant

increases between day 4 and day 14, corresponding to the

profound increase in eosinophil number during this time period.

We used IPA software and the miRanda database to examine the

relationships between miRNAs and these specific transcripts, in

order to determine whether any of the 68 differentially expressed

miRNAs (Fig. 2) might have binding sequences that could target

their respective 39-UTRs. Interestingly, none of the aforemen-

tioned 68 miRNAs has any potential to regulate MBP or

eosinophil-associated ribonuclease (EAR) 1 and 2 (data not

shown). By contrast, IL-5Ra chain is linked to 7 miRNAs;

expression of 5 of these miRNAs undergoes a decrease (miR -7b, -

181c, -467e, -486 and -669b) and 2 (miR -362-5p and -1896) were

increased (Fig. 5B and C). CCR3 may be targeted by 10 miRNAs,

of which 7 (miR -7b, -378, -421, -467a, -467b, -467e and -486)

were decreased and 3 (miR -193b, -292-5p and -1896) were

increased (Fig. 6B and C). Moreover, four miRNAs (miR -7b, -

467e, -486 and -1896) may regulate the expression of both the IL-

5Ra chain and CCR3. The 39-UTR binding sites of these

miRNAs are included in Table S6 in File S2.

Association between miRNAs and Expression of Genes
Encoding Toll-like Receptors (TLRs) by bmEos
TLRs are vital innate immune receptors that detect and

respond to signals from infectious pathogens. Studies carried out

in vitro indicate that eosinophils express numerous TLRs [55–57].

We detected increased expression of transcripts encoding TLRs -4,

-6 and -13 between days 4 and 14, while transcripts encoding TLR

-1, -2, -3, -5, -7, -8, -9, -11 and -12 were decreased (Fig. 7A and

Fig. S1). By employing IPA software and miRanda databases, 10

miRNAs were directly associated with mRNA encoding TLR4, of

which 8 (miR -7b, -130a, -181c, -181d, -363, -374, -451 and -539)

were decreased and 2 (miR -135a and -200a) were increased (Fig. 7

B and C). TLR13 was associated with the decreased expression of

5 miRNAs (miR -125b-5p, -181c, -181d, -421 and -669f) and the

increased expression of 4 miRNAs (miR -28, -152, -546 and -1896;

Fig. 7B and C). Moreover, miR-181c and miR-181d have the

potential to regulate the expression of both TLR4 and TLR13. By

contrast, none of the aforementioned 68 miRNAs has the potential

to regulate the other TLRs. The 39-UTR binding sites of miRNAs

that target these mRNAs are shown in Table S7 in File S2.

Discussion

Our study was undertaken in order to examine miRNA

expression in bmEos during differentiation from a global

perspective starting within the cellular milieu of the BM, and

then to correlate miRNAs with expression of key eosinophil

signature transcripts in cultures enriched in differentiating

eosinophils. We have established ex vivo culture of bmEos and

determined the expression of characteristic receptors and

transcriptional regulators during their development. The miRNA

expression profile was determined and correlated to expression of

molecules known to be critical to eosinophil development by

stringent statistical and pathways analysis. With these approaches,

we report a unique miRNA network that is closely linked to

eosinophil differentiation programe.

Although mouse models are widely used to elucidate the

pathogenesis of human disease, their effectiveness towards

interpreting clinical observations remains a subject of debate

[58,59]. In particular, the differences between human and mouse

eosinophils are often used to explain the failure of mouse models to

reproduce important features of human allergic and parasitic

diseases. While it is true that significant differences between

human and mouse eosinophils exist [60], this does not necessarily

imply global and fundamental disparities in differentiation and

overall function [60]. Indeed, both species share similar signaling

mechanisms leading to the generation of terminally differentiated

eosinophils from committed progenitors [60]. For example, IL-3,

IL-5 and GM-CSF are eosinophilopoietic cytokines that critically

regulate the survival, expansion and differentiation of eosinophils

in both species [2,6,50]. The progenitors from both human and

mouse show a similar expression pattern of GATA family

transcription factors as well as other factors known to play key

roles in eosinophil differentiation, including PU.1 and c/EBP

proteins [24–26].

Eosinophil lineage progenitors are derived from hematopoietic

stem cells. Although it is recognized that a unique combinatorial

interaction of GATA -1 and -2, PU.1 and c/EBPe may provide

essential signals for the maturation [24–26], other factors may also

contribute to the differentiation. In this context, miRNAs provide

an additional but critical level of control by modulating mRNA

translation. Because miRNAs are not perfectly complementary to

their targets, each is capable of regulating a large number of

mRNAs. As such, miRNAs can potentially modulate entire

transcriptional programs, although key individual targets may

also be critically important [32–34]. Our results suggest that the

four key transcriptional factors are differentially targeted by

distinct groups of miRNAs (Fig. 4). To further validate the

relationships between miRNA and target mRNA, we cloned the

39UTR regions of GATA-1 into dual-fluorescence luciferase

reporter constructs (see Method S1). Co-transfection of luciferase

constructs with the mimics of the four miRNAs resulted in a dose-

dependent decreases in luciferase activity, compared to control

mimic, demonstrating that the four miRNAs directly target

GATA-1 transcript (Fig. S2). Notably, let-7e, miR-7b, -144 and

-130a, that were each ,100-fold decreased during eosinophil

hematopoiesis, are associated with the increased levels of transcript

encoding GATA-1, PU.1, GATA-1 and c/EBPe, respectively.

Notable, change of miR-130a was strongly correlated to that of c/

EBPe by Pearson correlation test (P,0.0005, r =20.97, Table S8

in File S1). In addition, miR -200a and -429 potentially regulate

multiple distinct transcription factors (Fig. 4B). Interestingly, these

two miRNAs belong to the same miR-200 family that play an

essential role in the suppression of tumors by inhibiting epithelial

mesenchymal transition [61], suggesting their roles (together with

other miRNAs) in controlling potential over-expression of the

targets and maintaining a fine balance between the four key

transcription factors.

Moreover, Lu et al (with C57BL/6 mice) have identified that

miR-21 regulates the development of eosinophils by modulating

the growth of eosinophil progenitors [62]. However, we could not

identify the significant changes of miR-21 in our list of miRNAs.
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Figure 6. Expression levels of IL-5Ra, CCR3 and MBP correlated with the expression of miRNAs that potentially target these
transcripts. Bone marrow cells were cultured as described in Methods and RNA samples were extracted from day 4 to day14 from cells grown in the
presence of IL-5. A. Expression levels of IL-5Ra, CCR3 and MBP were determined by qPCR. B. Potential miRNAs targeting the 39-UTR of IL-5Ra and
CCR3 were identified by TargetScan and MiRanda database and IPA ingenuity system. Blue represents decreased expression of miRNAs, whereas

MicroRNAs Regulate Eosinophilopoiesis

PLOS ONE | www.plosone.org 10 May 2014 | Volume 9 | Issue 5 | e97537



Considering that we used BALB/c background mice, we speculate

that the difference of the two studies is likely attributed to the

strain difference. Although miRNAs are highly conserved in

animals, the profiles of miRNA expression were previously found

to be significantly different across inbred mouse strains [63].

Furthermore, hematopoietic stem- and progenitor- cells exhibit

striking differences in genetic traits between mouse strains [64,65].

Recently, a study of mouse progenitor cells also indicates that

miRNA profiles are strain-dependent [66]. Nevertheless, Gerrits

et al have found an evolutionary conserved miRNA cluster

containing miR -99b, let-7e and miR-125a [66]. Notably, these

three miRNAs are highly expressed in the progenitor cells of

different mice strains but down-regulated during differentiation.

Similarly, we have also found that the expression of let-7e and

miR-125a were significantly decreased during eosinophil matura-

tion. By contrast to miR-99b, we have shown that miR-99a

expression was significantly reduced upon eosinophil differentia-

tion. Interestingly, both miR-99a and miR-99b belong to the same

miR-99 family which regulates cell proliferation by targeting Akt/

mTOR (mammalian target of rapamycin) signalling [67]. These

studies strongly support our observations and that of others in

terms of function and strain dependence.

Most recently, Bettigole et al showed that X-box binding protein

1 (XBP1) selectively determines eosinophil development, indepen-

dently from other known eosinophil-related transcription factors

including GATA-1 [28]. Interestingly, we have also demonstrated

that three miRNAs -(e.g. miR -125a-3p, -196a and -196b)- with

decreased profiles may also target XBP1 transcripts, although we

didn’t detect altered expression of XBP1 during bmEos differen-

tiation (data not shown). These results suggest that the aforemen-

tioned miRNAs may control the translation of their target instead

of degrading XBP1 transcript and, as such, they represent a

distinct network in control of eosinophil maturation.

To investigate further the connectivity of miRNAs and other

intracellular signaling pathways, we generated a list of 348

potential mRNAs that associated with eosinophil biology and

are targeted by the miRNAs, by cross-comparison with TargetS-

can and MeSH database. With IPA Ingenuity system, we further

showed that 40.2% of miRNAs-targeted mRNAs were included

within the top 30 canonical signaling pathways, among which

were molecules controlling cell cycle, growth and death, and cell

activation (Fig. 5). For example, PTEN signaling and PI3K/AKT

signaling are closely paired, and serve to balance one another in

order to regulate cell proliferation. Impairment of PTEN signaling

may lead to PI3K/AKT hyperreactivity, resulting reduced

apoptosis and unchecked cell proliferation [68]. Furthermore,

miRNA may also target other pathways such as IL-3, IGF-1, IL-15

and FLT3 signaling that may contribute to the early eosinophil

progenitor commitment. Interestingly, miRNAs are associated

with HMGB1 pathway, indicating that miRNAs indirectly

regulate chromatin remodelling. In addition, inflammatory

pathways such as IL-6, IL-12, JAK/STAT and NF-kB signalings

may be closely modulated by miRNAs.

Interestingly, among the 348 potential miRNA targets, IL-5Ra
and CCR3 are well-known signature receptors of eosinophils

[2,4,5]. The expression of IL-5Ra and CCR3 were increased

almost 250-fold and 180-fold respectively, from day 4 to day 14 of

culture (Fig. 6A). These results are consistent with the expansion of

the SiglecF+Gr-1+CD11b+CD11c2 bmEos population. Although

MBP transcripts were also increased about 100-fold, none of 68

miRNAs identified here are known to target this molecule.

Furthermore, none of these miRNAs are associated with EAR 1

and 2 transcripts encoding the eosinophil associated ribonucleases,

which are the mouse orthologs of eosinophil cationic protein (ECP)

and eosinophil-derived neurotoxin (EDN). Interestingly, four

miRNAs (miR -7b, -467e, -486 and -1896) were closely associated

with the expression of both IL-5Ra and CCR3. Moreover, several

miRNAs (e.g. miR -193b, -292-5p, -362-5p, -467a -467b, -467e

and -486 -1896) recognize the multiple sites in the IL-5Ra and/or

CCR3 39-UTR (Table S6 in File S2). Among these miRNAs, the

expressions of four miRNAs (miR-7b (P,0.05, r =20.7617); miR-

181c (P,0.05, r =20.7719); miR-467e (P,0.05, r =20.826) and

miR-669b (P,0.05, r =20.8171)) were negatively correlated to

the expression of IL-5Ra by Pearson correlation test (Table S8 in

File S1).

Eosinophils interact with the environment via releasing their

granule contents including MBP, ECP and EDN [2]. Recent

findings suggest that eosinophils interact with bacteria by

producing neutrophil-extracellar traps (NETs) structures com-

posed of mitochondrial DNA, MBP and ECP [69]. Indeed,

stimulation of eosinophils with lipopolysaccharide (LPS) promotes

the cells to produce tumor necrosis factor a and eosinophil cationic

protein in a dose-dependent manner. Likewise, studies carried out

in vivo suggest that activation of TLR7/MyD88 is essential for

eosinophil-mediated clearance of virion challenge [57]. However,

how eosinophils specifically recognize infectious targets remains

uncertain. In this context, TLRs are among the most important

pattern recognition receptors and they may act as infection sensors

for eosinophils [55–57]. Indeed, there are reports showing that

human eosinophils constitutively express TLR transcripts (e.g.

TLR -1, -4, -7, -9 and -10), and mouse eosinophils can express

both surface and intracellular TLR receptors (TLR -3, -4 and -7)

[56,57]. To determine if any of the 68 miRNAs are linked to

TLRs, we first determined the expression levels of all twelve mouse

TLRs and found that three TLRs (TLR4, TLR6 and TLR13) are

increased while those encoding the remaining TLRs decrease

during bmEos differentiation (Fig. 7). TLR13 is newly identified as

a molecular sensor for bacterial 23S rRNA [70]. TLR13 is an

intracellular receptor, belonging to TLR11 family [71]. Currently,

it is believed that intracellular TLRs recognize nucleic acid sensors

[72], suggesting a likely role of TLR13 in anti-viral infections.

There is no identified human ortholog of this receptor. It is

interesting to note that the TLR13 transcript is identified in

eosinophils; whether these cells employ TLR13 to regulate anti-

bacterial infection requires further studies. In order to explore the

connections between miRNAs and TLR expression in bmEos, we

identified that two distinct sets of miRNA are likely involved in the

expression of TLR4 and TLR13 transcripts (Fig. 7 and Table S7

in File S2). Among these miRNAs, miR-181c shows profound links

to TLR4, TLR13 and IL-5Ra; miR-7b also shows the extensive

association with major eosinophil factors including TLR4, PU.1,

IL-5Ra and CCR3. MiR-669f, with decreased expression, is

related to the increased transcripts of both PU.1 and TLR13.

These miRNAs with down-regulated profiles are paralleled with

their up-regulated targets, suggesting that they may play greater

roles in the regulation of eosinophil biology.

Hitherto, there is very limited experimental evidence available

for the biological roles of the identified miRNA networks.

yellow is for miRNAs with increased expression. C. The fold changes of potential regulating miRNAs were calculated based on the fluorescence index
of each miRNA at different time-points, after normalization to that of the respective miRNAs in the control group (isolated bone marrow cells). Data
represent three independent eosinophil cell cultures. Values are presented as mean 6SEM (n= 4,6), **P,0.001 (vs. other groups). *P,0.01 (vs. BM).
doi:10.1371/journal.pone.0097537.g006
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Figure 7. Expression of TLR4, TLR6 and TLR13 correlated with the expression of miRNAs that potentially target these transcripts.
Bone marrow cells were cultured as described in Methods and RNA samples were extracted from day 4 to day14 from cells grown in the presence of
IL-5. A. Expression levels of TLR4, TLR6 and TLR13 were determined by qPCR. B. Potential miRNAs targeting the 39-UTR of TLR4, TLR6 and TLR13 were
identified by TargetScan, the MiRanda database and IPA ingenuity system. Blue represents decreased expression of miRNAs, whereas yellow is for
miRNAs with increased expression. C. The fold changes of potential regulating miRNAs were calculated based on the fluorescence index of each
miRNA at different time-points, after normalization to that of the respective miRNAs in the control group (isolated bone marrow cells). Data represent
three independent eosinophil cell cultures. Values are presented as mean 6SEM (n= 4,6), **P,0.001 (vs. d4, d6, d8 or d10).
doi:10.1371/journal.pone.0097537.g007
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However, emerging studies show the unique roles of several of

miRNAs in controlling cell growth and differentiation and it is

likely that these miRNAs, forming networks, may influence the

process of eosinophilopoiesis via the post-transcriptional regula-

tion. For example, miRNA cluster including let-7e and miR-125a

is implicated in hematopoiesis [66]; miR-7b inhibits proliferation

of mouse pancreatic b cells [73]; miR-144 together with miR-451

controls erythropoiesis [39]; miR-130a plays key roles in

regulating angiogenesis, tumor development and inflammatory

disease and also anti-viral responses [74–77]. Furthermore, miR-

196a has been shown to regulate stem cell proliferation, fibroblast

function, angiogenesis and tumor cell growth [78–81].

In conclusion, we have utilized a model of bmEos differenti-

ation, which has enabled examination of the expression patterns of

miRNAs during eosinophil development. We have analysed these

patterns, and have identified miRNAs that may play pivotal roles

in driving bmEos maturation and regulating eosinophil anti-

infection function. These selected miRNAs can be grouped as

networks in order to guide bone marrow cells toward bmEos

development in cooperation with cytokine signaling. Furthermore,

there are also key intracellular signaling pathways that may be

regulated by these miRNAs. To understand how these selected

miRNAs interact with their targets, further functional studies with

miRNA targeting are required and we will proceed with knock-in

and knock-down models. Manipulating the expression of these

miRNAs may promote understanding of the underlying mecha-

nisms that are critical for eosinophil biology and ultimately provide

therapeutic benefits for treating eosinophil-associated diseases.

Supporting Information

Figure S1 Expression of TLR1, TLR2, TLR3, TLR5,
TLR7, TLR8, TLR9, TLR11 and TLR12 correlated with
the expression of miRNAs that potentially target these
transcripts. Bone marrow cells were cultured as described in the

Methods and RNA samples were extracted from day 4 to day14

from cells grown in the presence of IL-5. Expression levels of the

above TLRs were determined by qPCR. Data represent three

independent eosinophil cell cultures. Values are presented as mean

6SEM (n= 4,6), *P,0.01 (vs. d4).

(TIF)

Figure S2 Luciferase activity in lysates of HEK293 cells
transfected with constructs encoding the 39UTR region
of GATA-1 and miRNA mimics (miR-378, let-73, miR-
200a and miR-429) or scrambled control mimic at the
concentrations indicated. Ctrl = control. n = 6, values repre-

sented as mean6SEM. At respective concentration, *P,0.05,

miR-378 mimic v.s. Ctrl mimic; **P,0.05, let-7e mimic v.s. Ctrl

mimic treatment; # P,0.05, let-7e mimic v.s. Ctrl mimic; w P,

0.05, let-7e mimic treatment v.s. Ctrl mimic.

(TIF)

Table S1 Primer sequence for determining mRNA
levels by quantitative PCR.
(DOC)

File S1 This file includes: Table S2. Annotation of
miRNAs with greater than 5 fold changes, as shown in
Figure 2; Table S4. Eosinophil related canonical path-
ways potentially regulated by the miRNAs; Table S5.
Eosinophil related canonical pathways potentially regu-
lated by the miRNAs; and Table S9. Pearson correlation
test of the miRNAs and their targets.

(XLSX)

File S2 This file includes: Table S3: Potential binding
sites between GATA1, PU.1 and their respective miR-
NAs; Table S6: Potential binding sites between IL-5Ra,
CCR3 and their respective miRNAs; and Table S7:
Potential binding sites between TLR4, TLR13 and their
respective miRNAs.

(DOCX)

Method S1 Luciferase reporter assay was described.
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